La dispersión indica la medida en que las observaciones se desvían de una medida apropiada de tendencia central. Las medidas de dispersión se dividen en dos categorías, es decir, una medida absoluta de dispersión y una medida relativa de dispersión. La varianza y la desviación estándar son dos tipos de una medida absoluta de variabilidad; que describe cómo las observaciones se extienden alrededor de la media. Diferencia No es más que la media de los cuadrados de las desviaciones.,
diferente a, desviación estándar es la raíz cuadrada del valor numérico obtenido al calcular la varianza. Muchas personas contrastan estos dos conceptos matemáticos. Por lo tanto, este artículo intenta aclarar la importante diferencia entre la varianza y la desviación estándar..
Bases para la comparación | Diferencia | Desviación estándar |
---|---|---|
Sentido | La varianza es un valor numérico que describe la variabilidad de las observaciones desde su media aritmética. | La desviación estándar es una medida de la dispersión de observaciones dentro de un conjunto de datos. |
Qué es? | Es el promedio de desviaciones al cuadrado.. | Es la desviación cuadrática media.. |
Etiquetado como | Sigma cuadrado (σ ^ 2) | Sigma (σ) |
Expresado en | Unidades cuadradas | Las mismas unidades que los valores en el conjunto de datos.. |
Indica | ¿Qué tan lejos están los individuos en un grupo?. | ¿Cuántas observaciones de un conjunto de datos difieren de su media?. |
En las estadísticas, la varianza se define como la medida de la variabilidad que representa la extensión de los miembros de un grupo. Averigua el grado promedio en que cada observación varía de la media. Cuando la varianza de un conjunto de datos es pequeña, muestra la cercanía de los puntos de datos a la media, mientras que un mayor valor de varianza representa que las observaciones están muy dispersas alrededor de la media aritmética y entre sí.
Para datos no clasificados:
Para la distribución de frecuencia agrupada:
La desviación estándar es una medida que cuantifica la cantidad de dispersión de las observaciones en un conjunto de datos. La baja desviación estándar es un indicador de la cercanía de las puntuaciones a la media aritmética y representa una desviación estándar alta; Las puntuaciones se dispersan en un rango de valores más alto..
Para datos no clasificados: Para la distribución de frecuencia agrupada:
La diferencia entre la desviación estándar y la varianza se puede establecer claramente por los siguientes motivos:
Las calificaciones obtenidas por un alumno en cinco asignaturas son 60, 75, 46, 58 y 80 respectivamente. Tienes que encontrar la desviación estándar y la varianza..
En primer lugar, tienes que averiguar la media.,
Así que las marcas medias (medias) son 63.8
Ahora calcula la varianza
X | UNA | (x-A) | (X-A) ^ 2 |
---|---|---|---|
60 | 63.8 | -3.8 | 14.44 |
75 | 63.8 | 11.2 | 125.44 |
46 | 63.8 | -17.8 | 316.84 |
58 | 63.8 | 5.8 | 33.64 |
80 | 63.8 | 16.2 | 262.44 |
Donde, X = Observaciones
A = media aritmética
Así que la varianza es de 150.56.
Y la desviación estándar es -
Estos dos son términos estadísticos básicos, que juegan un papel vital en diferentes sectores. Se prefiere la desviación estándar a la media, ya que se expresa en las mismas unidades que las de las mediciones, mientras que la varianza se expresa en las unidades más grandes que el conjunto de datos dado.